On the mechanism of G protein beta gamma subunit activation of the muscarinic K+ channel in guinea pig atrial cell membrane. Comparison with the ATP-sensitive K+ channel
نویسندگان
چکیده
The mechanism of G protein beta gamma subunit (G beta gamma)-induced activation of the muscarinic K+ channel (KACh) in the guinea pig atrial cell membrane was examined using the inside-out patch clamp technique. G beta gamma and GTP-gamma S-bound alpha subunits (G alpha *'s) of pertussis toxin (PT)-sensitive G proteins were purified from bovine brain. Either in the presence or absence of Mg2+, G beta gamma activated the KACh channel in a concentration-dependent fashion. 10 nM G beta gamma almost fully activated the channel in 132 of 134 patches (98.5%). The G beta gamma-induced maximal channel activity was equivalent to or sometimes larger than the GTP-gamma S-induced one. Half-maximal activation occurred at approximately 6 nM G beta gamma. Detergent (CHAPS) and boiled G beta gamma preparation could not activate the KACh channel. G beta gamma suspended by Lubrol PX instead of CHAPS also activated the channel. Even when G beta gamma was pretreated in Mg(2+)-free EDTA internal solution containing GDP analogues (24-48 h) to inactivate possibly contaminating G i alpha *'s, the G beta gamma activated the channel. Furthermore, G beta gamma preincubated with excessive GDP-bound G o alpha did not activate the channel. These results indicate that G beta gamma itself, but neither the detergent CHAPS nor contaminating G i alpha *, activates the KACh channel. Three different kinds of G i alpha * at 10 pM-10 nM could weakly activate the KACh channel. However, they were effective only in 40 of 124 patches (32.2%) and their maximal channel activation was approximately 20% of that induced by GTP-gamma S or G beta gamma. Thus, G i alpha * activation of the KACh channel may not be significant. On the other hand, G i alpha *'s effectively activated the ATP-sensitive K+ channel (KATP) in the ventricular cell membrane when the KATP channel was maintained phosphorylated by the internal solution containing 100 microM Mg.ATP. G beta gamma inhibited adenosine or mACh receptor-mediated, intracellular GTP-induced activation of the KATP channel. G i alpha *'s also activated the phosphorylated KATP channel in the atrial cell membrane, but did not affect the background KACh channel. G beta gamma subsequently applied to the same patch caused prominent KACh channel activation. The above results may indicate two distinct regulatory systems of cardiac K+ channels by PT-sensitive G proteins: G i alpha activation of the KATP channel and G beta gamma activation of the KACh channel.
منابع مشابه
On the Mechanism of G Protein 13~/ Subunit Activation of the Muscarinic K + Channel in Guinea Pig Atrial Cell Membrane Comparison with the ATP-sensitive K + Channel
From the 2nd Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan; Division of Cardiovascular Diseases, Departments of Internal Medicine and Pharmacology, Mayo Clinic, Mayo Foundation, Rochester, Minnesota 55905; Department of Life Science, Faculty of Science, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama, Kanagawa 2...
متن کاملEvidences on the existence of a new potassium channel in the rough endoplasmic reticulum (RER) of rat hepatocytes
Introduction: we have recently reported the presence of two potassium currents with 598 and 368 pS conductance in the rough endoplasmic reticulum (RER) membrane. The 598 pS channel was voltage dependent and ATP sensitive. However, the 368 pS channel was rarely observed and its identity remained obscure. Since cationic channels in intracellular organelles such as mitochondria and RER play imp...
متن کاملActivation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملEffector Contributions to Gβγ-mediated Signaling as Revealed by Muscarinic Potassium Channel Gating
Receptor-mediated activation of heterotrimeric G proteins leading to dissociation of the G alpha subunit from G beta gamma is a highly conserved signaling strategy used by numerous extracellular stimuli. Although G beta gamma subunits regulate a variety of effectors, including kinases, cyclases, phospholipases, and ion channels (Clapham, D.E., and E.J. Neer. 1993. Nature (Lond.). 365:403-406), ...
متن کاملActivation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 99 شماره
صفحات -
تاریخ انتشار 1992